
JOURNAL OF COMPUTATIONAL PHYSICS 88, 86-l 13 (1990) 

Viscous Effects on Propagation and Reflection of 
Solitary Waves in Shallow Channels 

C. J. TANG, V. C. PATEL, AND L. LANDWEBER 

Department of Mechanical Engineering and Iowa Institute of Hydraulic Research, 
University of Iowa, Iowa City, Iowa 52242-1585 

Received July 29, 1988; revised May 30, 1989 

A numerical method for the solution of the Navier-Stokes equations for flows with a free 
surface, with emphasis on the exact kinematic and dynamic boundary conditions at the free 
surface, is described. The method is used to study the propagation of a solitary wave in a 
shallow channel, and the reflection of such a wave from a vertical wall. The numerical results 
are compared with analytical solutions which neglect or simplify the effects of viscosity and 
surface tension. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

The investigation of a nonlinear long wave, such as a tsunami, traveling in 
shallow water near the shore, is important in the design of coastline and harbor 
structures. In classical two-dimensional, long-wave theory, the inviscid approxima- 
tion is usually made in a perturbation analysis to obtain either the Korteweg-de 
Vries equation in the case of unidirectional propagation or the Boussinesq equation 
for waves moving in two directions. Based on this theory, the interesting result was 
obtained that the tendency of nonlinear effects to increase the wave slope is 
balanced by the dispersion of the wave system, and, therefore, the wave profile is 
preserved during the propagation. However, if viscosity of the fluid is considered, 
energy dissipation will reduce the wave amplitude. To analyze these complexities, 
including nonlinear effects, dispersion, and dissipation, a more general formulation 
is required. Solutions of the Navier-Stokes equations with consistent viscous 
boundary conditions offer an opportunity to capture these phenomena. Because 
closed-form analytic solutions probably do not exist, we present here numerical 
solutions of the two-dimensional Navier-Stokes equations with the complete set of 
viscous boundary conditions applied at the free surface. 

Recent work in computational fluid dynamics has led to many numerical 
methods for the solution of the Navier-Stokes equations. However, many of these 
are restricted to steady two-dimensional flows, and most to flows without free sur- 
faces. On the other hand, numerical methods which account for free surfaces are 
based on the assumption of an inviscid fluid. The very few methods which include 
both free surfaces and viscosity appear to use the marker-and-cell (MAC) technique 
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which was introduced by Harlow and Welch [I]. They used markers, in the 
Eagrangian sense, to trace the motion of fluid particles at the free surface an 
within the flow region. The SUMMAC (Stanford University modified AC) 
method [Z] refined some cumbersome parts of the MAC method and used, instead, 
Eulerian markers at the free surface to indicate the geometry of the free surface. 

In the present study, an efficient and stable numerical method is proposed for 
solving unsteady, two-dimensional, free-surface flow problems. Certain features o 
the MAC and SUMMAC methods are combined with the SIMPLER (semi-implicit 
method for pressure-linked equations revised) algorithm of Patankar [3], which 
has been used with considerable success in the coupling of the momentum and 
continuity equations, and the finite-analytic (FA) methlod of Chen and Chen [Le], 
which employs analytical solutions of the linearized equations to discretize the 
nonlinear momentum equations. This general method is used to study the viscous 
damping of a solitary wave in a channel of constant depth, and the reflection of 
such a wave from a vertical wall. In both cases, comparisons are made with the 
available solutions to explicate the effect of viscosity. 

2. GOVERNING EQUATIONSAND BOUNDARY CONDITIONS 

The Navier-Stokes equations for two-dimensional, unsteady flow, no~d~rne~~ 
sionalized with the depth h and velocity a, where g is the gravitational c~~sta~t~ 
are 

and the equation of continuity is 

where Re = p & h/p is the Reynolds number, (u, v) are the horizontal and vertical 
velocity components in the (x, y) directions, respectively (see Fig. l), t is time, p is 
the piezometric pressure (i.e., p =p* + y, p* being the static pressure), p is the fluid 
density, and p is the viscosity coefficient. 

For the solution of Eqs. (1) to (3), it is necessary to define a solution domain and 
to provide appropriate boundary conditions at all boundaries of that domain, and 
the initial conditions at t = 0 in the whole domain. For a typical wave-propagative 
problem, we choose the computational domain shown in Fig. 1. The conditions at 
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FIG. 1. Wave in a channel: notation and coordinates. 

the upstream boundary, x=x,, and those on the channel bottom (v = -h) are the 
same, i.e., 

u=v=o. (4) 

If it is necessary to specify conditions at the downstream boundary x = xd, the most 
appropriate is 

au 0 -= 
ax . 

However, if there is a vertical wall at the boundary, the conditions at the junction 
of the wall and the free surface are not known. Herein, we shall ignore the nonslip 
condition along this wall, i.e., ignore the thin boundary layer along it, and apply 

at two numerical grid points just beneath the free surface in unsteady-flow calcula- 
tions to determine the moving contact point. 

More complicated boundary conditions apply at the free surface because of its 
unknown location, and the effects of viscosity and surface tension. The kinematic 
condition that fluid particles at the free surface remain on the free surface is 
DF/Dt = 0, where F(x, y, t) = 0 is the equation of the free surface. If the surface 
profile is defined by 

F=.Y-VI(X, t) (7) 
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then the kinematic condition becomes 

For dynamic boundary conditions at a liquid-gas interface, with negligible 
viscous stresses in the gas, we have, in general, 

where cii is the stress tensor 

in the liquid, ni and zi are unit vectors, normal and tangential to the free surface, 
respectively, 6, is the Kronecker delta, k is the curvature of the free surface, and 
is the Weber number, defined by We = pgh*/a, LT being the coefficient of surface 
tension. For the present two-dimensional problem, with the free surface given by 
Eq. (7) we have 

a*tjlax2 
k= [I + (aq/axyp 

and Eqs. (9) reduce to 

2r(aq/a.# au/ax - (aujay + avjax) all/ax i- atqayl k 
po=v+ Re [ 1 + (aq/a$l 

(Ill 

where 

PO(X) =Pk f? 1 

and 

respectively. Substituting Eqs. (3) and (12) into Eq. (11) yields 

PO=?+ 
2[1+ (&//ax)‘] dv k --I 

Re[ 1 - (&j/ax)2] dy We’ 

In summary, the boundary conditions at the free surface of a viscous liquid are 
expressed by Eqs. (8), (12), and (13). Because of the complexity and difficulty of 
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handling these conditions, most previous investigators have introduced simplifica- 
tions and approximations in the treatment of viscous effects at the free surface. In 
the’ present study, we apply the complete boundary conditions in the numerical 
solutions. 

The initial free-surface profile of a solitary wave is taken to be that given by the 
closed-form formulation of Boussinesq, i.e., 

y = A0 sech*[i(x - x0) &] (14) 

in which A, is the maximum height of the wave and x0 is the location of the wave 
crest. The initial velocity field was obtained numerically from a stream fun-ction 
which satisfies the Laplace equation with the conditions of constant values at the 
bottom and the free surface, and linear variation between these two constants at the 
upstream and the downstream ends of the solution domain. An initial condition for 
the pressure field is not necessary because the pressure is implicitly determined by 
the specified velocity field. 

3. NUMERICAL METHOD 

3.1. Linearization and Solution of Momentum Equations 

The Navier-Stokes equations (1) and (2) are first linearized and written in the 
form 

$ifi=Re ~+U~+v-+-+~o, 
( 

av ap 
w ay ay ) (16) 

where U, V are mean values of u, v within a numerical element, and S, and S, 
represent source terms correcting for the linearization. These linear equations can 
be solved by a variety of methods. For numerical solutions, the value of a variable 
at a particular node is expressed in terms of those at the neighboring nodes, with 
coefficients obtained by various formulations, for example, Taylor-series expansions 
in finite-difference methods. In the FA method of Chen and Chen [4] used here, 
analytic expressions for these coefficients are obtained in the form of Fourier series, 
and the variable at the central node is expressed in terms of the eight surrounding 
nodes of a rectangular element in the two-dimensional case. Tests have shown that 
the FA method gives a very stable and accurate solution for flows at various 
Reynolds numbers. A minor disadvantage of the method is that it requires con- 
siderable effort to calculate the coefficients, each of which is expressed as the sum 
of a series. This is alleviated in the present study without loss of numerical stability 
by using simplified analytic expressions for the coefficients. 
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Equations (15) and (16) are written in the form 

where $I stands for either u or u, and the constant coefficients are 

A=Re U, B=Re V, C=Re 

G =Re&+S ” 
ay ” 

S,=Re 
! 

(u-U)g+(c--I/): . 
1 

In a small numerical cell, as shown in Fig. 2a, we split Eq. (17) into two, 

in which the unknown nonhomogeneous terms F, and Fz are constants over a cell 
and must satisfy the condition 

A general solution of Eq. (18) is a linear combination of exponential and linear 
functions of X, i.e., 

@=ae 

in which the coefficients a and b can be eliminated by using the boundary co&i- 
tions @(he, 0) = $,, $(-h,, 0) = I),, and +(O, 0) = $*, i.e., 

f’,= -$ [IH,(~,-~,)--H,(~,--51/,)1, (21) 

where 

H, = exp(A h,) - 1 

H,= 1 -exp(-A k,) 

H’=h,H,-h,H,. 
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Likewise, the nonhomogeneous term in Eq. (19) is 

(22) 

where 

H, = exp(B h,) - 1 

H,= l-exp(-Bh,) 

H”=h,H,-h,H, 

in which $(O, h,) = $n and $(O, -h,) = $,. If we approximate all//at by a backward 
difference, i.e., 

a* *;-*;-I 
at= At ’ 

where $; and $;-’ are, respectively, the values at the current and previous time 
steps, then, from Eqs. (20), (21), and (22), we obtain the discretization formula 

ll/; = C, t,b: + C,$n, + C,t,b; + C&I + C,$;- 1 - C,G”, (23) 

in which the FA coefficients are 

AH C,=-J AH 
C,,=& 

BH, c,=- 
BH 

HH’ ’ HH”’ 
c,=L 

HH” ’ 

c 
cb=- 

AtH’ 
C,=l 

H’ 

In short, Eq. (23) is expressed in the form 

IC/::=CCNB*~BI~+C~~~-~-C~G~, (24) 

where the subscript NB represents the “neighboring” nodes of P. We note that the 
various coefficients in this equation contain the mean values U and I’ resulting from 
the linearization of the original Navier-Stokes equations. Referring to Fig. 2b, these 
are evaluated at particular nodes by simple interpolations, e.g., 

ve = C(vne + us,) Ax, + (u, + 0,) AxdMAxp + AxAl 
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FIG. 2. Symbols in the numerical scheme 



94 TANG, PATEL, AND LANDWEBER 

and 

us = C(uw + d AYP + (u, + u,) f4Y,l/[2(~Y, + Ay,)] 
vs=v,. 

The coefficients C,, C,, C,, C,, and C, are all positive and less than 1, with the 
sum equal to 1, which yields a stable scheme. Since the corner nodes in the 
neighborhood of P are not included in this simplified live-point version of the FA 
method, it is not as accurate as the complete nine-point FA method [4] which 
includes the corner points. If the numerical grid is carefully chosen to avoid very 
large mesh aspect ratios, however, the error due to this simplification is not severe. 

The linearized Navier-Stokes equations are coupled through the unknowns u, V, 
and p, and therefore, in principle, they require a simultaneous solution. In the 
present scheme, we use the x-component momentum equation to solve for u and 
consider other variables, such as v and dp/i3x, as given values from the previous 
time or iteration. Similarly, the y-component momentum equation is solved for v. 
The variable p is implicitly determined by letting the velocity field satisfy the 
continuity equation. The algorithm is outlined in the next section. 

3.2. Solution of Continuity Equation 

The SIMPLER algorithm [3] is used to couple the velocity and pressure fields. 
A staggered numerical grid, with the velocity and pressure nodes located as shown 
in Fig. 2b, is used. The nodes of u and v are located at the boundaries of a control 
volume while that or pressure is centered. Capital letters (E, W, P, N, S) will be 
used to denote the pressure nodes and lowercase letters (e, w, IZ, s) for the velocity 
nodes. Also, the distances between velocity nodes will be denoted by dx,, dy,, etc., 
and those between the pressure nodes by Ax,, Ay,, etc. 

Using central-difference expansions, the continuity equation (3) is written in the 
form 

~=~(u,-uw)+-&-+O. 
P P 

By applying Eq. (23) at point e for velocity u, we have 

(26) 

where fi, is the pseudovelocity defined by 

(27) 

the coefficient of the pressure-difference term is defined in Eq. (29), quantities with 
the notation le are evaluated at the node of u,, and the subscript NB stands for the 
neighboring nodes of u, (see Eqs. (23) and (24)). If the velocities at the west, north, 
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and south sides are expressed in a similar manner and substituted in Eq. (25), we 
obtain the following equation for pressure: 

d 
a =A 4 4 d 

e a =------ 
a,Ax,’ w 

a =- 
up Axp’ n 

a=A 
apAy,’ ’ ap AY, 

If the velocity field is calculated from the discretized momentum equations (26) 
etc., the pressure can be obtained from Eq. (28). A new set of velocities u, u can be 
updated from the discretized momentum equations by using this pressure. In 
practice, several such iterations are necessary to obtain a convergent solution. It is 
found that these iterations converge rather slowly because the continuity equation 
is not explicitly satisfied in every iteration cycle. In order to accelerate the 
convergence, the pressure, obtained from Eq. (28), must be corrected so that the 
associated velocity field satisfies the continuity equation. 

If we denote the approximate velocities and pressure by (u*, v*) and p*, 
respectively, the velocities calculated from Eq. (26) with p* are 

u* = 1.2: - d,(p; -p;), e etc. 

If these are subtracted from the exact expressions, i.e., Eq. (24) with the correct ip7 
we have 

u, = u,* = 6, - ii,* - d,( p; - p’p), etc., 

where the pressure deviation p’ ( =p -p*) and the terms (U-U*), (6 - li*), etc., are 
corrections corresponding to the velocity and pseudovelocity fields, respectively. 
Because all of these corrections vanish when the solution has conver 
approximations in these relations only affect the intermediate solution but not 
final one. Thus, the correction of the pseudovelocity field, (C- 2;*), etc., may be 
neglected without any error in the final solution. This critical approximation was 
applied by Patankar [3] in his SIMPLER algorithm. In the present study, the 
same approach is used so that the velocities are approximately related to the 
pressure corrections in the form 

ue=u* e - de(p’, -A), etc. 

581:8ajl-7 
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Substitution into the continuity equation (25) then yields the pressure-correction 
equation 

p~=a,pl,+a,p’w+a,pj,+a,p~-a,D*, (31) 

where 

D*=&(uf-u$)+~(+-:) 
P AY, 

and the other coefficients are exactly the same as in Eq. (29). After the pressure 
correction is determined from Eq. (31), we use this in Eq. (30) to update the 
velocity field, keeping the pressure field fixed. The pressure field is then updated by 
this new velocity field. The solution procedure is outlined in a later section. 

3.3. Treatment of the Free Surface 

The treatment of the free-surface boundary conditions described in Section 2 is 
the most important part of the present problem. There are three elements in the 
procedure used to take the free surface into account: determination of the free-sur- 
face geometry; updating the conditions at the free surface; and linking the free sur- 
face with the fluid interior. Basically, marked particles of the MAC or SUMMAC 
method are employed to determine the instantaneous location of the free surface in 
either the Lagrangian sense (MAC method) or the Eulerian sense (SUMMAC 
method). This is conceptually equivalent to satisfying the kinematic condition at the 
free surface. In addition, two dynamic boundary conditions have to be satisfied at 
the free surface. Due to the nonlinearity and coupling of unknowns in these condi- 
tions, several global iterations, including the entire flow domain and the free 
surface, are required to obtain a converged solution at an instant of time. 

(a) Determination of Free-Surface Geometry 

The kinematic condition at the free surface, Eq. (8), is applied to determine the 
locations of marked particles at the free surface, i.e., the geometry of the free 
surface. Before solving Eq. (8), it is necessary to interpolate the velocity field at the 
location of every marked particle (at the free surface) from the main body of the 
fluid. For this purpose, a second-order interpolation formula is obtained from a 
Taylor-series expansion. If, for instance, a point at the free surface is located 
at (xk, yk) in the local numerical-grid system, as shown in Fig. 2(c), then the 
x-component of velocity at this point is represented by 

uk=up+xk ax P 
(“> -+Yk($)p+;xi($)p 

+;$$$)p+xkYk(~)P~ (33) 
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where 

and expressions of (&/ax), and (&@x),, similar to (au/ax),, are evaluated at 
y=& and y= -A,, respectively. The expression for ok is similar to that of u,~. 

The (fictitious) values of u above the free surface are obtained by a three-point 
extrapolation, 

where 

zfg=a,u,-aa,u,-t-a,u,, (34) 

(hl + h,)(h,+ A2 + h3) 
a,+(h,+h,+hi), 

k@l + h2) 
a, = 

h(h2 + h3) ’ 2 3 a3=h,(h,+h,) 

and h 1, h,, h, are defined in Fig. 2d. The extrapolation formula for u0 is similar. 
These expressions, combined with Eq. (33) give the desired velocities at the free 
surface. 

Once the velocity of each marked particle is known, the location of the free 
surface can be determined by moving these particles to their new locations in time 
period At. There are two methods to do this. One uses the Eagrangian marker to 
satisfy the explicit expressions 

x,=x”,-‘+u,At 

yk=y;-‘+vkAt, 

where the superscript n - 1 stands for the values evaluated at the previous time step. 
The other employs Eulerian markers, implicitly satisfying the kinematic condition 
of Eq. (8). Using central differences in space and an implicit scheme in time, t 
may be represented by the finite-difference formula 
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where the coefficients are 

b, =-& up At r$, 
ew 

b,= --$--uPAtrz 
ew 

b,= l-be-b,, b,=v,At+y;-’ 

G,, = r,e,(re + r,), 

and re, r, are distances projected on the x-axis from a particular particle to two 
neighboring particles at the free surface, as shown in Fig. 2e. It should be men- 
tioned that in order to maintain stability the time step At used in both methods is 
restricted to a specific small value which ensures that multiple values of y do not 
result for any marker as it moves on the free surface. Also, it was found from 
numerical experiments that the results of the two methods do not differ significantly 
if the iterative solutions at each time step converge. Although both methods were 
investigated, the second, more implicit method was preferred because it offers the 
possibility of iterative updates during the time step. 

(b) Updating the Free-Surface Conditions 

Generally speaking, for a two-dimensional viscous flow with a free surface, there 
are four unknowns, U, v, p, and y, to be determined using the dynamic and 
kinematic conditions at the free surface. Except for the kinematic condition, which 
is applied to determine the elevation of the free surface y, only two dynamic condi- 
tions remain. Because U, v, and p are coupled together in the governing equations, 
these two conditions are enough to determine a unique solution. In the present 
study, the normal component of the dynamic condition, Eq. (13), is used to specify 
the pressure at the free surface, while the tangential component, Eq. (12), is applied 
to update the velocity u there. Other variables in the dynamic conditions are chosen 
as values calculated in the previous iteration. 

To introduce exactly the specified pressure condition at the free surface, the 
pressure near the free surface must be interpolated by means of an “irregular star” 
formulation which satisfies the discretized Poisson equation [2]: 

where 

dE= 4 d,= d, 
’ tE(tE+ <w)’ tW(L+ 5w)’ 

dN= d, d,= dp 
5d5N + 5s)” MtN + 5s) ’ 
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and tE, SW, tN, t5’ are the starred distances as shown in Fig. 2f. Were the source 
term S, = D/At has been modified from the SUMMAC method to fit the 
implicit scheme. Using this pressure expression, we are able to impose the exact 
pressure condition (13) at the free surface. 

Second, for the tangential component of the dynamic condition, Eq. (22) is 
rewritten in the form 

au au 4 -=---+ av afl = s -- 
ay ax (ar/aX)2- i ayax 4' 

whence we obtain, in the same second-order finite-difference form, 

uo = a,u, + u2u2 + a3u3 + s,, 

where 

2h, + 2h, + h, 
a1= - h,(h,+h,) ’ 

2h,+hz+h, 2h, + h, 
a2 = 

h,h, u3 = - h,(h, + h,)’ 

The lengths h,, h,, h, and velocities u o, u2, u3 are defined in Fig. 2d. Equation (38) 
is used to update the x-component of the velocity at the free surface. With regard 
to 21 at the free surface, the value is determined so that the continuity equation is 
satisfied, or is evaluated by extrapolation from inside the fluid, analogous to 
Eq. (38). 

3.4. Solution Procedure 

To summarize, the complete solution procedure is as follows: 

1. Specify the initial conditions for the veloity field and the free-surface 
profile. 

2. For each time step: 
a. 

b. 
C. 

d. 

e. 

f. 

g. 

Calculate the FA coeffkients in the discretized momentum ~q~at~o~s 
(23) and the pseudovelocity field from Eqs. (27), etc. 
Calculate mass source 6 from Eq. (29). 
Calculate pressure near the free surface by the irregular-star formulation 
(37) as boundary conditions of p. 
Solve Eq. (28) for pressure with boundary conditions obtained from c. 
Several iterations are necessary for a converged result. 
Solve for u*, v* from Eqs. (26), etc. (i.e., ZE, v in these equations) with 
conditions (4) and (5) or (6). Several iterations are required for a 
converged solution. 
Determine the mass source D* from Eq. (32). 
Solve for corrections of pressure p’ from Eq;s. (31). Several iterations are 
required for a converged solution. 
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h. Correct the approximate velocity components u*, u*, from Eqs. (30) 
etc., but do not correct the pressure. 

i. Update the tangential component of the dynamic conditions to obtain u, 
u at the free surface from Eq. (38). 

j. Interpolate to find the velocity of marked particles from Eq. (33). 
Update the free surface by either Lagrangian or Eulerian markers from 
Eqs. (35) or (36). 

k. Update conditions at boundaries other than the free surface. 

1. Repeat steps a through k until the velocity and pressure fields converge 
within a prescribed level. 

3. Proceed to the next time step. 

4. VISCOUS DAMPING OF A SOLITARY WAVE 

The first test problem is the viscous damping of a solitary wave in a long, 
two-dimensional, shallow water channel. Solitary waves in water were studied 
experimentally by Russell in 1837. A century later, an analytical solution was first 
found by Keulegan [S]. Keulegan’s solution was rederived by Mei [6] using a 
perturbation method. The viscous damping considered in this solution was only 
that due to the boundary layer at the bottom of the channel. The approximate 
result is 

0.08356t 
/.j -l/4 = A - u4 + ~ 

0 
JiG' 

(39) 

FIG. 3. Solution domain and numerical grid 
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0.3 

FIG. 4. Evolution of wave profiles at different Reynolds numbers 
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Re= 50,000 A,= 0.2 

2 4 6 8 10 12 

FIG. 4. (Continued) 

where A, and A are the initial and damped wave lengths, respectively, t is the travel 
time of the wave, and Re is the Reynolds number based on the velocity & and 
water depth h in the channel. This expression is claimed to be compatible with 
Russell’s experimental data for a solitary wave in water and will be compared with 
the numerical solutions. 

In the present calculations, viscous damping by both the bottom and the free 
surface are considered because the full Navier-Stokes equations are solved with the 
nonslip condition at the channel bottom and the complete kinematic and dynamic 
(including viscosity and surface tension) conditions at the free surface. A solitary 
wave, with initial free-surface profile given by Eq. (14) and A, = 0.2, was initialized 
at the position x0 = 10.0 at t = 0 and then allowed to propagate in the positive 
direction of the x-axis. The calculation domain was taken to be the region between 
x, = 0.0 and xd= 30.0, with 62 x 30 grid points in the x and y directions, respec- 
tively, as shown in Fig. 3. The solution was marched up to t = 12 in 120 time steps, 
each with At = 0.1, and about five iterations at each time step were required to 
ensure that the free-surface, elevation had converged to within lop5 of the reference 
value h. Calculations performed with different time steps indicated little sensitivity 
of the final results for this wave amplitude. 

The numerical results for the free-surface elevation between t = 0 and t = 12, at 
intervals of 2 time units, are shown in Fig. 4 for three values of the Reynolds 
number, Re = 50, 500, and 50,000. It is clear that the viscous damping of the wave 
decreases with increasing Reynolds number. 

An essential result of linear theory of waves in a viscous fluid [7] is that the 
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viscous effect attenuates only the wave amplitude, without affecting the wave 
length, velocity, or phase [S]. However, this is not true for a nonlinear wave of 
finite amplitude, such as a solitary wave in a channel. The viscous effect causes the 
wave amplitude, wave length, velocity, and phase all to change of the wave travels 
in the channel. From Fig. 4 it is found that the wave crest lags by small but 
increasing amounts as the Reynolds number decreases. This is presumably due to 
the stronger nonlinearity of the free surface, and the relatively greater dissipation of 
energy at the bottom and the free surface at low Reynolds numbers. The latter will 
tend to reduce the wave amplitude and, consequently, the velocity of pro 
of the wave. 

The calculated attenuation of the wave crest with distance traveled by the wave 
is shown in Fig. 5. The numerical predictions with the grid shown in Fig P are 
consistent with Eq. (39) and the limitations of the theory. 

Typical distributions of velocity, pressure, vorticity and rate-of-strain for 
Re = 500 at t = 6 are shown in Fig. 6a-d. The velocity field shown in Fig. Ba is 
similar to that calculated from potential theory in regions remote from the 
boundaries. The corresponding pressure distribution (Fig. 6’0) is smooth but has a 
hump just below the wave crest. This hump moves with the wave. 

Figure 6c shows where vorticity is generated and how it diffuses. There are two 
sources of vorticity, one at the channel bottom and the other at the free surface, the 
former being much stronger. At the free surface the vorticity is most intense at 
positions of maximum curvature. This is consistent with the results of 

0.3 

X 

FIG. 5. Damping of wave height with distance. 
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Landweber, and Tang [9] obtained from the theory of the free-surface boundary 
layer. As the Reynolds number is increased (results not shown), the vorticity 
becomes more concentrated and is intensified. This is true for the vorticity 
generated in the boundary layer at the channel bottom as well as that at the free 
surface. At large times, the point of minimum vorticity at the bottom moves in 
phase with the wave peak while the vorticity which has diffused far from the bottom 
lags behind the wave crest. A region of vorticity of opposite sign (with positive 
magnitude) is left behind on the bottom. 

Finally, we note that the zero-tangential-stress condition at the free surface is 
equivalent to a zero tangential rate of strain, (au/@ + &J/&C). It is, therefore, of 
interest to examine the distribution of the rate of strain. This is shown in Fig. 6d. 
We see that the rate of strain is associated only with the nonslip condition at the 
bottom. In other words, the vorticity at the free surface has no rate of strain 
associated with it. 

5. REFLECTION OF THE WAVE AT A VERTICAL WALL 

The second problem we shall consider is that of reflection of the wave from a 
vertical wall. An incident solitary wave, of initial height A, at x=x0 in a channel 
of unit depth, propagates in the x-direction towards a vertical wall located at x = xd 
and is reflected, as shown in Fig. 7. The numerical solutions will be compared with 
the inviscid solutions of Meneses and Chwang [lo], who, in turn, have compared 
their results with the experimental observations of Chan and Street [ 1 l] and 
Maxworthy [12], and the results of linear theory. 

The inviscid solution for this problem was obtained by Meneses and Chwang 
[lo] by a perturbation method. The two small parameters for asymptotic expan- 
sions in their theory are: the ratio of the incident wave amplitude A,* to the water 
depth, i.e., A,, = A,*/h 4 1, and the ratio ‘of the water depth to the wave length A, i.e., 
(h//Z) 4 1; but with the Ursell number, Ut = A$12*/h3, they are assumed to be of the 
order of unity. The solution for the surface profile can then be expressed as 

q = A,[sech*(L + 6,) + sech*(R + 6,) 

+ A,($ech* L sech2 R - $ech* L tanh* L 

- $ sech* R tanh* R)], (40) 

where 

R=~(x-2xd+xo+~)~3Ao 

6, = $ A,(tanh R - 1) 

6, = aA,(tanh L + 1) 

/?= (1 + A,/2) t. 
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FIG. 6. Typical solution field at an instant of time. 
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FIG. 6. (Continued) 
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FIG. 7. Notation for wave reflection from a vertical wall. 

The above parameters have been modified to apply to the present coor~~~at~ 
system. The maximum amplitude occurs at 

The duration 6t for which the crest of the wave remains at the wall is 

b’=& -E [l + O(A,)] 

and the phase shift, 6x, after reflection is 

6x = J&@ [ 1 + O(A,)]. 

These theoretical results of Meneses and Chwang [IO] compared well wit 
experiments of Maxworthy [ 121 and Chan and Street [ 1 1 ]. 

For the numerical calculations, the initial free-surface profile and velocity field 
were specified in the same way as in the previous case. Waves with A0 in the range 
0.1 to 0.5 with the crest at x0 = 10 at t = 0, were calculated. The vertical wall is at 
xd= 20 and the solution domain extended from x, = 0 to xd= 20, as shown in 
Fig. 7. The Reynolds number based on channel depth and & chosen for all 
calculations of this section is 50,000. The calculations were carried out over 160 
time steps, with d t = 0.1, and 5 iterations at each step. It should be remarked that, 
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FIG. 8. Free-surface profiles during wave reflection. 
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FIG. 9. Time variation of wave run-up at the wall. 

as discussed in Section 1, the conditions &$3x = 0 and u = 0 were used at two no 
just beneath the free surface to determine the contact point along the vertical wall. 

The time evolution of the free-surface profile is shown in Fig. 8 for tbe case of 
&==0.2. The present viscous solution is compared with the inviscid result of 
Eq. (40). As expected, the influence of viscosity is to decrease the wave amplitude 
and speed in the course of the reflection, The run-up height at the wall is plotted 
against time in Fig. 9. The table in this figure shows the time t,,, for the maximum 
run-up, from both the present numerical calculations (denoted as “‘viscous” in the 
table) and the inviscid-flow results (Eq. (41)). The occurrence of the maximum 
run-up for inviscid flow is slightly earlier than that for viscous flow. This is because 
the attenuation of the wave amplitude in viscous flow delays the propagation 
toward the wall. Figure 10 shows the relation between t:he incident-wave height and 
the maximum run-up at the wall. The present results are shown only up to A, = 0.3 
because, for steeper waves, it was not possible to assure solution accuracy with the 
chosen grid. In this figure, comparisons of the present numerical results with those 
obtained from experimental data, the inviscid-flow results of Meneses and Chwang 
and the linear solution are shown, It is found that the present method gives 
consistent and satisfactory results. 

The time evolution of the velocity field during reflection for the case of A, = 0.2 
is shown in Fig. 11. The flow near the wall during the reflection first decelerates 
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FIG. 10. Maximum run-up versus incident wave amplitude. 

toward the wall with the vertical velocity increased, then becomes stationary, and, 
finally, descends and accelerates in the reflected direction. The effect of the wall at 
a point is approximately equivalent to the superposition of two identical waves, of 
wave length large compared with the water depth, approaching each other. This 
implies that the path of a fluid particle is approximately an ellipse about its mean 
position (see Lamb [7]). This property is consistent with the numerical results 
shown in Figs. 6a and 11. 

Finally, it is of interest to note that all calculations reported here were carried 
out on a Prime 9955 computer. A typical calculation, with a 62 x 30 grid and 150 
time steps, required between 30 and 40 min of cpu time. 

6. CONCLUSIONS 

We have presented a numerical method for the solution of the unsteady, two- 
dimensional, Navier-Stokes equations for flows involving a free-surface. Two 
problems, concerned with solitary waves, have been treated and the results com- 
pared with available experimental data and other theoretical solutions. These show 
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FIG. 11. Velocity field during wave reflection. 
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that the present approach yields satisfactory results. With regard to the numerical 
method, we note that greater accuracy can be achieved by replacing the simple five- 
point finite-analytic formulation used for the momentum equations with the more 
complete nine-point formula. Also, boundary-fitted coordinates, moving with the 
free surface, could be used to further increase the accuracy, especially for waves 
with large curvature and slope. 
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